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First, why nuclear?
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What do we want from a ‘nuclear material’?

- What are ‘nuclear materials’?
- Whatis a Gen |V reactor?

* Why is nuclear important compared to other energy
sources?
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Nuclear Materials Challenges and High

Nuclear Fuel Development Lifecycle
Throughput HEAs
- The deployment of advanced reactor cores, like Gen IV P Fuel design J.'ngfff&
reaé:torsI relies upon the development of advanced —
materials

Performance
assessment

Fuel, rodlet, pin
fabrication

e.g. comparison of e.g. TRU bearing
thermal vs fast spectrum metal fuel rodlets

irradiation data M u Iti_Physics
Modeling & Simulation

« The traditional trial and error ap(froach to nuclear
material development (cook and look) is slow and
expensive

— Roughly 25 year R&D cycle P amnete
— Qualification notionally requires 10 years and $500m
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Modernization of nuclear R&D is required
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« Advanced materials, such as HEAs or MPEAs,
can provide material performance previously
unavailable to reactor designers
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Designing the Alloys

Modeling Down Experimental
Selection Validation

» Accelerated approach to materials
research through intelligent
materials design.

- Combinatorial materials modeling
and electron microscopy
accelerates the pace at which
researchers converge on potential
high-entropy alloy candidates from
an early stage

* Down selection of material

Material Properties Combinatorial Modeling || Down Selection

_ Superior Fracture Toughness Formation Energies ——
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e Al possibilities (over 2.3 million 3-6
Matetl element systems) to a dozen distinct

— 1 options for insertion to the
Advanced Test Reactor (ATR)
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Evaluating Properties Alloy Design through Machine Learning

Prediction and Training on Elastic Modulus

Predicted Elastic Modulus (GPa)
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- Training & evaluation dataset: 30,000+
alloys containing varying concentrations from
0 °Kto 1673 °K.
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Alloys selected

Local Size Mismatch
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Irradiation Test Strategy — FAST

Fission-Accelerated Steady-State Testing in the ATR

Accelerated fuel irradiation test: Up to 10x burnup rate
Double Encapsulated design facilitates versatile experiment design opportunities
Improved sensitivities to fabrication eccentricities and variations
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Material Fabrication

+ Supporting efforts in alloy design and
selection by fabricating 100+ alloys.

 Single and compositionally graded
specimens.

* Alloys extensively characterized (in
progress) to assess microstructure,
structural uniformity, mechanical
response, and thermal stability.

N_— -
\m ldaho National Laboratory

Compositionally Graded Rodlets / Irradiation Vehicles
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Irradiation Test Strategy —

* ASME circumferential
pressure limit is
dependent upon the yield
stress and wall thickness
of the tubing
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Combinatorial Nuclear Alloy Expenment and Des:gn

The application of HEAs and MPEAs in
advanced nuclear reactor concepts has
the potential of unlocking
unprecedented energy opportunities
that are safe, reliable, and
environmentally responsible.

This combination of materials by design
with machine learning and advanced
testing at ATR is the foundation of the
Nuclear Materials Discovery and
Qualification Initiative at INL.

p—y
. "a st
(\ '. r L le
Nuclear Materials Discovery c — s

_lllllll c
g _.|||||.. i
- Ill--

kT
O e
el

ldaho National Laboratory

0
\% ldaho National Laboratory

N IVI DQO and Qualification Initiative

Center for Advanced
Energy Studies
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Materials Lrjibrary Tracking Properties (and
,, others) with varying
T (K) composition and
293 K temperature.
(25 °C)

Changes elastic moduli are
visualized with composition
and temperature.

Visualizing the relative
changes in either elastic
modulus, tensile strength, or
other is starting point for our
data analytics approaches
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Materials Library

Tracking Properties (and
others) with varying
composition and
temperature.

Changes elastic moduli are
visualized with composition
and temperature.

Visualizing the relative
changes in either elastic
modulus, tensile strength, or
other is starting point for our
data analytics approaches




Advanced Microscopy QA — XRCT
- ZEISS Xradia 520 Versa X-Ray Microscope
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Micro X-ray Computed Tomography of Hiah Entroov Allov Rods

« ZEISS Xradia 520 Versa X-ray Microscope i

* Image Acquisition Parameters
— X-ray Source
« 160 kVp accelerating voltage
* 10 W power ——
— Flat Panel Detector (geometric magnification only) , s
- 3064 px X 1936 px detector size [
» Detector binning = 1
— 3201 radiographs per 360° sample rotation
— 0.04 s exposure per frame

— 20 frames per radiograph (resulting in ~1 h per
tomogram)

— 4 tomograms per sample* were acquired and
digitally stitched using ZEISS software

« *Sample H4-1 is comprised of 5 tomograms
— Isotropic voxel size for each tomogram = 6.7 ym

ZEISS Versa X-ray Source ZEISS Versa Flat Panel Detector
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